The IMS Open Corpus Workbench (CWB)
Corpus Encoding Tutorial

— CWB Version 3.4 —

Stefan Evert & The CWB Development Team
http://cwb.sourceforge.net/

5 January 2010

Contents

1 Prerequisites

2 First steps: Encoding and indexing

3 Indexing and compression without CWB /Perl
4 CWRB corpora and XML

5 Adding attributes to an encoded corpus

6 Adding XML annotations

7 Accessing frequency information

8 Sentence alignment
8.1 The example corpora L
8.2 Using the sentence aligner L Lo
8.3 Advanced use of the aligner L
8.4 Encoding the aligner’s output Lo

8.5 Importing a pre-existing alignment Lo Lo

A Appendix: Registry file format

10

13
13
15
17
17
18

18

http://cwb.sourceforge.net/

Corpus Encoding Tutorial 2 FIRST STEPS: ENCODING AND INDEXING

1 Prerequisites

In order to follow this tutorial, you need to install the IMS Open Corpus Workbench (CWB),
version 3.0 or newer, which can be downloaded from

http://cwb.sourceforge.net/download.php

It is easiest to install a pre-compiled binary package, following instructions on the Web page and in
the enclosed README file. You should also install the CWB/Perl interface, which includes the useful
cwb-make and cwb-regedit programs. A data package with all input files needed for the examples
in this tutorial below is available from

http://cwb.sourceforge.net/documentation.php

2 First steps: Encoding and indexing

The standard CWB input format is one-word-per-line text,! with the surface form in the first column
and token-level annotations specified as additional TAB-separated columns. XML tags for sentence
boundaries and other structural annotation must appear on separate lines. This file format is also
called verticalized text and has the customary file extension .vrt. An example of the verticalized
text format for a short sentence with part-of-speech and lemma annotations is shown in Figure 1.
This file, as well as all other input files required by the following examples are made available in the
accompanying data package.

<s>

It PP it

was VBD be

an DT an

elephant NN elephant
SENT

</s>

Figure 1: Verticalized text file example.vrt
In order to encode the file as a

e (Create a data directory where files in the binary CWB format will be stored. Here, we assume
that this directory is called /corpora/data/example. If this directory already exists contains
corpus data (from a previous version), you should delete all files in the directory. NB: You need
a separate data directory for each corpus you want to encode.

e Choose a registry directory, where all encoded corpora have to be registered to make them
accessible to the CWB tools. It is recommended that you use the default registry directory
/usr/local/share/cwb/registry.? Otherwise, you will have to specify the path to your reg-
istry directory with a -r flag whenever you invoke one of the CWB tools (or set an appropriate

1Or, more precisely, one token per line; i.e., the CWB expects punctuation marks, parentheses, quotes, etc. on separate
lines. The precise tokenization rules depend on your theoretical assumptions and the requirements of annotation
software such as part-of-speech taggers. Note that the CWB does not include any NLP components and has to be
provided with a tokenized and annotated corpus.

2In previous versions of the CWB, the default registry directory used to be /corpora/cl/registry (for historical
reasons). All binary packages of CWB 3.0 and newer use the new default setting. If you already have a working envi-
ronment with the old registry path, you may want to compile the CWB source code yourself, selecting the traditional
site configuration.

(© 2005-2015 Stefan Evert & The CWB Development Team 2

http://cwb.sourceforge.net/download.php
http://cwb.sourceforge.net/documentation.php
/corpora/data/example
/usr/local/share/cwb/registry
/corpora/c1/registry

Corpus Encoding Tutorial 2 FIRST STEPS: ENCODING AND INDEXING

environment variable, see below). In this tutorial, we assume that you use the standard registry
directory.

e The next step is to encode the corpus, i.e. convert the verticalized text to CWB binary format
with the cwb-encode tool. Note that the command below has to be entered on a single line.

$ cwb-encode -d /corpora/data/example -f example.vrt
-R /usr/local/share/cwb/registry/example
-P pos -P lemma -S s

(The $ character indicates a command line to be entered in a Unix shell. It is inspired by the
customary input prompt used by the Bourne shells sh and bash.)

The first column of the input file is automatically encoded as the default positional attribute
(p-attribute) named word. -P flags are used to declare additional p-attributes, i.e. token-level an-
notations. -S flags declare structural attributes (s-attributes), which encode non-recursive XML
tags and whose names must correspond to the XML element names. By convention, all attribute
names must be lowercase (more precisely, they may only contain the characters a-z, 0-9, -, and _,
and may not start with a digit). Therefore, the names of XML elements to be included in the CWB
corpus must not contain any non-ASCII or uppercase letters.

The -R option automatically creates a registry file, whose filename has to be written in lowercase.
Note that it is necessary to specify the full path to the registry file, even if the default registry directory
is used. The CWB name of the corpus (also called the corpus ID) is identical to the name of the
registry file, but is written in uppercase (here it will be EXAMPLE). The CWB name is used to activate
a corpus in the query processor CQP, for instance.

Input files with the extension . gz are assumed to be in gzip format and are automatically decompressed
(provided that the gzip program is installed on your computer). Multiple input files can be specified
by using the —-f option repeatedly, and will be read in the order in which they appear on the command
line. Note that shell wildcards (e.g. -f *.txt) do not work (since each file name must be preceded
by -f). However, it is possible to read all files named *.vrt or *.vrt.gz in a given directory using
the -F option (possibly repeated for multiple directories). Input files from the same directory will be
read in alphabetical order.

All options (-d, -f, -R, etc.) must precede the attribute declarations (=P, -S, etc.) on the command
line. It is mandatory to specify a data directory with the -d option.® This directory should always be
given as an absolute path, so the corpus can be used from any location in the file system.

e Before a corpus can be used with CQP and other CWB programs, various index files have to
be built. It is also strongly recommended to compress data files, especially for larger corpora.

e The easiest and recommended method for indexing and compression is to use the cwb-make
script that comes with the CWB /Perl interface modules. If you are unable to install the
modules and use this script, refer to Section 3 for a manual procedure.

$ cwb-make -V EXAMPLE

e If you do not use the standard registry directory /usr/local/share/cub/registry, you will
have to specify the path to your registry directory with the -r option. Alternatively, you can
set the environment variable CORPUS_REGISTRY, which will automatically be recognized by all
CWB programs. In a Bourne shell (sh or bash), this is achieved with the command

3Previous versions of the CWB would default to the current working directory. As a result, simply typing cwb-encode
on the command line would litter this directory with a number of empty data files and then hang, waiting for corpus
data on the standard input.

(© 2005-2015 Stefan Evert & The CWB Development Team 3

/usr/local/share/cwb/registry

Corpus Encoding Tutorial 3 INDEXING AND COMPRESSION WITHOUT CWB/PERL

$ export CORPUS_REGISTRY=/home/stefan/registry
In a C shell (csh or tcsh), the corresponding command is
$ setenv CORPUS_REGISTRY /home/stefan/registry

It is probably a good idea to add this setting to your login profile (*/.profile or ~/.login).
If you do not want to set the environment variable, you need to invoke cwb-make with

$ cwb-make -r /home/stefan/registry -V EXAMPLE

The following examples assume that you either use the default registry directory or have set the
CORPUS_REGISTRY variable appropriately.

e You can also specify multiple registry directories separated by colon characters (:), both in
the CORPUS_REGISTRY environment variable and the -r options of command-line tools. This is
convenient e.g. if some corpora are stored on external hard drives that are not always mounted.
Such optional registry directories may be prefixed by a question mark (?) in order to indicate
that they may not be accessible (otherwise CQP and some other tools will print warnings to
alert you to possible typos in the registry path). For instance, one of the lead CWB developers
has the following registry path in his ~/.bashrc configuration:

$ export CORPUS_REGISTRY=/Corpora/registry:?/Volumes/X/CWB/registry

Note that the built-in default registry directory /usr/local/share/cwb/registry is not auto-
matically appended to this path. If you want to specify additional registry directories but keep
the default one, you will have to include it in the value of CORPUS_REGISTRY.

The -V switch enables additional validation passes when an index is created and when data files are
compressed. It should be omitted when encoding very large corpora (above 50 million tokens), in
order to speed up processing. In this case, it is also advisable to limit memory usage with the -M
option. The amount specified should be somewhat less than the amount of physical RAM available
(depending on the number of users etc.; too little is better than too much). For instance, on a Linux
machine with 128 MB of RAM, -M 64 is a safe choice. Note that the cwb-make utility applies a default
limit of -M 75 if not explicit -M option is given.

e Display some information about the encoded corpus (add -s option for details and to ascertain
that all necessary data files have been created).

$ cwb-describe-corpus EXAMPLE

3 Indexing and compression without CWB /Perl

If you do not have the CWB/Perl inteface installed, by far the best thing you can do is to install
the CWB/Perl modules and the included scripts, and then go back to Section 2. If it is absolutely
impossible to install CWB/Perl or you really want to learn the nitty-gritty of corpus encoding, continue
here.

e In the manual procedure, indexing and compression are performed in separate steps by different
tools. First, you have to run cwb-makeall in order to build the necessary index files.

cwb-makeall -V EXAMPLE

Note that cwb-makeall accepts the same -V, -M and -r options as cwb-make.

(© 2005-2015 Stefan Evert & The CWB Development Team 4

Corpus Encoding Tutorial 4 CWB CORPORA AND XML

When the index files have been created, the corpus can already be used with CQP and other CWB
tools. However, it is recommended that you compress the binary data files to save disk space and
improve performance, especially for large corpora (above 10 million tokens). Compression is only
supported for p-attributes at the current time.

e For positional attributes, both the token stream data and the index can be compressed. There
are separate tools for compressing the two types of data files.

e The token stream can be compressed with the cwb-huffcode tool. Use the -P option to process
a single attribute, or compress all p-attributes with -A.

$ cwb-huffcode -A EXAMPLE
e Index files can be compressed with the cwb-compress-rdx tool, which accepts the same options.

$ cwb-compress-rdx -A EXAMPLE

When compression was successful, both tools will display the full pathnames of uncompressed data
files that are now redundant and can be deleted (namely, attrib.corpus after running cwb-huffcode,
as well as attrib.corpus.rev and attrib.corpus.rdx after running cwb-compress-rdx).

If you run cwb-makeall again, it will show now that the p-attributes are compressed. Note that the
compressed data files are validated by default, so it is safe to remove the redundant files. Validation
can be turned off with the -T option, but is less performance-critical than with cwb-makeall.

e NB: If you re-encode a corpus, it is important to erase all files in the data directory first. The
cwb-makeall program will not recognize that existing index files or compressed data files are
out of date, and will therefore fail to rebuild them automatically. This is one of the reasons why
the CWB/Perl cub-make tool should be preferred.

4 CWB corpora and XML

Nowadays, machine-readable text and linguistic annotations are often provided in XML format.
Version 3.0 of the IMS Open Corpus Workbench offers improved XML support, which is activated
by the following encoding options: -x for XML compatibility mode (recognises default entities and
skips comments as well as an XML declaration), -s to skip blank lines in the input, and -B to strip
whitespace from tokens. The verticalized text format with TAB-separated p-attributes is still required
by cwb-encode, but this format can easily be generated from an arbitrary XML file with the help of
an XSLT stylesheet. Figure 2 shows a typical example of an XML input file for the CWB (note that
this is still a well-formed XML file).

XML elements (i.e. matching pairs of start and end tags) can be encoded as s-attributes, which have
to be declared with -8 flags (for the file vss.vrt, the flags =S story -S p -S s would be used). If XML
regions of the same type are nested, encoding will only work correctly if you add :0 to the s-attribute
declaration, which enables a rudimentary XML parser built into cwb-encode. Attribute-value pairs
in XML start tags, such as

<story num="4" title="A Thrilling Experience">

can be stored as a single unparsed text string (num="4" title="A Thrilling Experience") by using
the flag -V instead of -S. This form of encoding is not convenient for CQP queries, though. It
is more desirable to declare XML tag attributes explicitly, which will automatically split the XML
elements into multiple s-attributes. Note that the options -xsB should (almost) always be used and
will automatically ignore the XML declaration and the comment line in Figure 2.

(© 2005-2015 Stefan Evert & The CWB Development Team 5

Corpus Encoding Tutorial 4 CWB CORPORA AND XML

<?xml version="1.0" encoding="IS0-8859-1" standalone="yes" 7>

<!-- A Thrilling Experience -->
<story num="4" title="A Thrilling Experience">
<p>

<s>

Tick NN tick

. SENT

</s>

<s>

A DT a

clock NN clock

. SENT

</s>

<s>

Tick VB tick

tick VB tick

. SENT

</s>

</p>

</story>

Figure 2: Verticalized XML file vss.vrt

e Encode the verticalized XML file vss.vrt as a CWB corpus, with indexing and compression. NB:
The last attribute declaration flag (-0 collection) is a digit zero (for a “null attribute”, see
below).

$ cwb-encode -d /corpora/data/vss -f vss.vrt
-R /usr/local/share/cwb/registry/vss
-xsB -P pos -P lemma
-5 5:0 =S p:0 -S story:0+num+title -0 collection

$ cwb-make -V VSS

If you do not have the cwb-make script available, follow the steps in Section 3.

These commands will encode the corpus VSS and create a registry file, including the s-attributes s, p,
story, story num, and story_title. The <story> start tags are parsed and the attribute values are
stored as annotations of the attributes story_num (value: 4) and story_title (value: A Thrilling
Experience). Regions of the story attribute itself will not be annotated. Use -V instead of -S to
store all attribute-value pairs as a single string, which can be useful for displaying and re-exporting
the XML tags.

XML elements with different names (such as <s> and <p>) are encoded independently, so they can
nest and overlap in arbitrary ways. The cwb-encode program does not perform any validation or
well-formedness tests. When elements are nested recursively (e.g. a <table> within a <table>), the
embedded elements will be ignored, though. After encoding, cwb-encode prints a summary listing
the number of dropped XML elements. If you want to preserve nested elements, you can specify a
maximal level of embedding instead of :0 in the examples above. For instance, -S table:2 allows two

(© 2005-2015 Stefan Evert & The CWB Development Team 6

Corpus Encoding Tutorial 5 ADDING ATTRIBUTES TO AN ENCODED CORPUS

levels of embedding for <table> elements. Nested elements are automatically renamed to <tablel>
and <table2>, respectively, and stored in separate s-attributes.

Sometimes, the input data may contain XML tags that should not be encoded in the corpus. For
instance, the stories in wss.vrt have to be wrapped in a single root element <collection> in order
to obtain a well-formed XML file. Instead of removing such tags during data preparation, they can
directly be filtered out by the cwb-encode tool. For this purpose, they have to be declared with the
flag -0 (digit zero, for “null attribute”) instead of -S or -V. All start and end tags of these elements
will be ignored completely. There is no need to add :0 or XML attribute declarations. Note that
all XML tags that have not been declared with a -S, -V or -0 flag will be encoded as literal tokens
(without annotations), accompanied by a warning message.

You may have noticed in Figure 2 that the XML file is declared to be in ISO-8859-1 (or Latin-
1) encoding rather than the standard UTF-8 format. The CWB has been developed exclusively for
ISO-8859-1 data (which is still widely used for German corpus data, e.g. by the TreeTagger and
associated tools). While it is possible to store and query data in other ISO-8859-x encodings — or
Unicode data in UTF-8 format — some features will not work properly unless the ISO-8859-1 encoding
is used.? If you need to handle non-Latin-1 data with the CWB, make sure that you are aware of the
precise limitations. It is probably a good idea to look for other users on the CWB mailing list who
have experience with such corpora. Version 3.1 of the CWB is expected to provide basic support for
ISO-8859-x and UTF-8 encodings.

5 Adding attributes to an encoded corpus

In order to add positional attributes to a corpus that has already been encoded, create input data
in the standard verticalized format, but listing only the new attributes. Figure 3 shows an example of
such an input file, containing WordNet synonyms for the tokens from Figure 1 (without attempting
any form of word sense disambiguation). A corresponding list of synonyms for the complete VSS corpus
can be found in the file syns.vrt.

|
|be|cost|live|work|equallexist|occurl...|
|

| elephant |

Figure 3: WordNet synonyms for the text shown in Figure 1 (excerpt from file syns.vrt)

The special notation seen in Figure 3 indicates that the synonyms for any given word constitute
an unordered set (or feature set in CWB terminology). Vertical bars (|) separate individual set
elements and enclose the entire set; a single bar | denotes the empty set. Feature sets are stored as
plain strings in a CWB-encoded corpus, but the special notation enables the query processor CQP
to test whether a particular string is contained in the set, match all set elements against a regular
expression, and compute the intersection of two sets.

e The file syns.vrt is encoded as usual, but the default word attribute has to be suppressed with
the option -p -. It is highly recommended to check that the number of tokens in the new file
(wc -1 syns.vrt) is equal to the corpus size (as reported by cwb-lexdecode -S EXAMPLE), so
that the new attribute is properly aligned to the rest of the corpus.

“In particular, case-insensitive (%c) and accent-insensitive (%d) matching as well as I#TEX notation for accented
characters are only supported for ISO-8859-1 data. Regular expressions do not work properly for UTF-8 data and should
only be used to express simple prefix and suffix constraint such as .*able in this case.

(© 2005-2015 Stefan Evert & The CWB Development Team 7

Corpus Encoding Tutorial 5 ADDING ATTRIBUTES TO AN ENCODED CORPUS

$ cwb-encode -d /corpora/data/vss -f syns.vrt -p - -P syn/

Notice the slash (/) appended to the attribute name syn. This notation indicates that the
new attribute should be treated as a feature set; cwb-encode will automatically validate and
normalise the supplied values, issuing warnings if they are not well-formed feature sets. (A
feature-set attribute that is not declared as such at index-time can still be treated as a feature
set in CQP, but in this case responsibility is with the user to ensure that the values are well-
formed feature sets.)

e The registry file for the corpus VSS (usually /usr/local/share/cwb/registry/vss) has to be edited
in order to declare the new attribute. Add the line

ATTRIBUTE syn

at the bottom of the file. If the CWB/Perl interface has been installed, the registry file can also
be edited from the command line with the cwb-regedit registry editor script:

$ cwb-regedit VSS :add :p syn

This script can also be used to list and delete attributes, and to print basic information about a
corpus (similar to cwb-describe-corpus, but easier for further processing). Type cwb-regedit -h
for further information.

e Now you can build index files and compress the new attribute:
$ cwb-make -V VSS
In order to add structural attributes with computed start and end points (corpus positions),
you can use the cwb-s-encode tool. The corresponding start and end positions of existing s-attributes

can be obtained with cwb-s-decode. The following example adds information about sentence length
to the VSS corpus.

e The existing s attribute is decoded into a temporary file, then awk is used to compute sentence
lengths, and the resulting annotated regions are encoded with cwb-s-encode.

$ cwb-s-decode VSS -S s > s.list
$ awk ’BEGIN { FS=0FS="\t" } { print $1, $2, $2-$1+1 }’ s.list > s_len.list
$ cwb-s-encode -d /corpora/data/vss -f s_len.list -V s_len

Note that it is currently not necessary to run cwb-make after adding an s-attribute.
e However, the new attribute still has to be declared in the registry file, either by manually adding
STRUCTURE s_len
or from the command line using the registry editor script:
$ cwb-regedit VSS :add :s s_len

Tables of corpus positions as input for cwb-s-encode can also be created from CQP query results
using the dump or tabulate command in a CQP session.

(© 2005-2015 Stefan Evert & The CWB Development Team 8

Corpus Encoding Tutorial 6 ADDING XML ANNOTATIONS

6 Adding XML annotations

In order to add XML annotations (e.g. <np> and <pp> tags inserted by a chunk parser) to an
existing corpus, the usual strategy is to decode the token stream (and other attributes if necessary) to
a temporary file. A chunk parser will often expect <s> and </s> tags marking sentence boundaries.

e Decode token stream (word forms) with start and end tags for <s> regions.
$ cwb-decode -C VSS -P word -S s > word_s.vrt

e We then run the chunk parser on the temporary file, which adds its <np> and <pp> tags to the
token stream, creating the file shown in Figure 4. This file is also provided as part of the data
package for this tutorial.

<s>

<np head="experience>
My

experience

<pp head="of">
of

<np head="life">
life

</np>

</pp>

</np>

did

not

</s>
Figure 4: Decoded text with chunk annotations (file chunks.uvrt)

e It is important that the token stream is left intact when adding XML annotations. In particular,
tokens (as well as XML tags) must remain on separate lines and may not be split or combined.
As a preliminary check, make sure that the number of tokens in chunks.vrt is equal to the corpus
size.

$ grep -v "<’ chunks.vrt | wc -1

Now we can use cwb-encode to encode the XML annotations as structural attributes. The start and
end points of regions are automatically computed from the token stream. Since we do not want to
overwrite the word attribute, we specify -p -. With no p-attributes declared, all lines in the input file
except for the XML tags will be ignored. Recall that -0 s (digit zero) instructs cwb-encode to ignore
<s> and </s> tags (without -S s they would otherwise be interpreted as literal tokens and mess up
the token stream).

e Encode <np> and <pp> regions in chunks.vrt as new s-attributes.

$ cwb-encode -d /corpora/data/vss -f chunks.vrt
-p - -0 s -S np:0+head -S pp:0+head

(© 2005-2015 Stefan Evert & The CWB Development Team 9

Corpus Encoding Tutorial 7 ACCESSING FREQUENCY INFORMATION

In this example, cwb-encode will issue warnings about nested regions being dropped. As can be seen
from Figure 4, <np> (as well as <pp>) regions may be embedded recursively. In order to preserve such
nested regions, change the :0 modifier to :2, allowing up to two levels of embedding (separately for
each element type, i.e. <np> regions embedded in larger <np> regions, etc.). In general, :n allows up
to n levels of embedding. The embedded regions will automatically be renamed to np1, np2, pp1, and
pp2, respectively.

e Encode chunks.vrt, allowing up to two levels of embedding for <np> and <pp> regions.

$ cwb-encode -d /corpora/data/vss -f chunks.vrt
-p - -0 s -S np:2+head -S pp:2+head

e The full list of s-attributes created by this command is np, npl, np2, np_-head, np_headi,
np_head?2, pp, ppl, pp2, pp-head, pp-headl, and pp-head2. They have to be declared in the
registry file of the corpus VSS, either by adding the appropriate entries manually, or with the
registry editor script:

$ cwb-regedit VSS :add :s np npl np2 np_head np_headl np_head2
$ cwb-regedit VSS :add :s pp ppl pp2 pp_head pp_headl pp_head2

o Attribute-value pairs in XML start tags may also contain feature sets. For instance, the Ger-
man chunk parser YAC® uses this notation to represent partially disambiguated morphological
features of NPs and PPs (see the CQP Query Language Tutorial for more information and
examples). XML tags of the form

<np agr="|Nom:F:Sg|Acc:F:Sg|" head="Wiese">

might be encoded with the declaration -S np:2+agr/+head, where the slash / indicates that
agr values are feature sets. Since head is not followed by a slash, the corresponding values are
not treated as feature sets.

7 Accessing frequency information

The cwb-lexdecode tool procides access to the lexicon of positional attributes, i.e. lists of all word
forms or annotation strings (types) with their corpus frequencies. The -S option prints the size of
corpus (tokens) and lexicon (types) only, P selects the desired p-attribute, -f shows corpus frequencies,
and -s lists the lexicon entries alphabetically (according to the internal sort order). In order to sort
the lexicon by frequency, an external program (e.g. sort) has to be used.

$ cwb-lexdecode -S -P lemma VSS
$ cwb-lexdecode -f -s -P lemma VSS | tail -20
$ cwb-lexdecode -f -P lemma VSS | sort -nr -k 1 | head -20

It is also possible to annotate strings from a file (called tags.txt here) with corpus frequencies. The
file must be in one-word-per-line format. -0 (digit zero) prints a frequency of 0 for unknown strings
rather than issuing a warning message; it can be combined with -f to the mnemonic form -£0.

$ cwb-lexdecode -fO -P pos -F tags.txt VSS

Shttp://www.ims.uni-stuttgart.de/~kermes/YAC/YAC.shtml

(© 2005-2015 Stefan Evert & The CWB Development Team 10

http://www.ims.uni-stuttgart.de/~kermes/YAC/YAC.shtml

Corpus Encoding Tutorial 7 ACCESSING FREQUENCY INFORMATION

With the -p option, word forms or annotations matching a regular expression can be extracted. Case-
insensitive and accent-insensitive matching is selected with -c and -d, respectively.® The example
below is similar to the CQP query [lemma = "over.+" %c]; but may be considerably faster on a
large corpus.

$ cwb-lexdecode -f -P lemma -p ’over.+’ -c VSS

An entire corpus or selected attributes from a corpus can be printed in various formats with the
cwb-decode tool. Note that options and switches must appear before the corpus name, and the flags
used to select attributes after the corpus name. Use -P to select p-attributes and -8 for s-attributes.
With the -s and -e options, a part of the corpus (identified by start and end corpus position) can be
printed.

$ cwb-decode -C -s 7299 -e 7303 VSS -P word -P pos -S s

-C refers to the compact one-word-per-line format expected by cwb-encode. For a full textual copy
of a CWB corpus, use -ALL to select all positional and structural attributes.

$ cwb-decode -C VSS -ALL > vss-corpus.vrt

The resulting file vss-corpus.vrt can be re-encoded with cwb-encode (using appropriate flags) to give
an exact copy of the VSS corpus. -Cx is almost identical to the compact format, but changes some
details in order to generate a well-formed XML document (unless there are overlapping regions or
s-attributes with “simple” annotations).”

$ cwb-decode -Cx VSS -ALL > vss-corpus.xml
$ xmllint --noout vss-corpus.xml # not well-formed :-(

This output format can reliably be re-encoded when the -xsB options are used. Finally, =X produces a
native XML output format (following a fixed DTD), which can be post-processed and formatted with
XSLT stylesheets.

$ cwb-decode -X -s 7299 -e 7303 VSS -P word -P pos -S s -S np_head

Note that the regions of s-attributes are not translated into XML regions. Instead, the start and end
tags are represented by special empty <tag> elements.

The cwb-scan-corpus computes combinatorial frequency tables for an encoded corpus. Similar
to the group command in CQP, it is a faster and more memory-efficient alternative for the extraction
of simple structures from large corpora, and is not restricted to singletons and pairs. The output
of cwb-scan-corpus is an unordered list of n-tuples and their frequencies, which have to be post-
processed and sorted with external tools. The simple example below prints the twenty most frequent
(lemma, pos) pairs in the VSS corpus, using the -C option to filter punctuation and noise from the list
of lemmata (note that -C applies to all selected attributes).

$ cwb-scan-corpus -C VSS lemma pos | sort -nr -k 1 | head -20

SRecall that these flags are only guaranteed to work correctly for a corpus in ISO-8859-1 (Latin-1) encoding.

"In order to re-create the original input file vss.vrt as a well-formed XML document, it would have been necessary to
store the full strings of attribute-value pairs from XML start tags by using -V flags instead of -S in cwb-encode attribute
declarations (e.g. -V story:O+num+title). In the cwb-decode call, problematic s-attributes created by auto-splitting of
these attribute-value pairs (story_num, story_title, s_len, np_head, ...) can then be omitted. The specification -8
story would print the full attribute-value pairs in <story> tags, etc.

(© 2005-2015 Stefan Evert & The CWB Development Team 11

story_num
story_title
s_len
np_head
<story>

Corpus Encoding Tutorial 7 ACCESSING FREQUENCY INFORMATION

A non-negative offset can be added to each field key in order to collect bigrams, trigrams, etc. The
following example derives a simple language model in the form of all sequences of three consecutive
part-of-speech tags together with their occurrence counts. Only the twenty most frequent sequences
are displayed.

$ cwb-scan-corpus VSS pos+0 pos+l pos+2 | sort -nr -k 1 | head -20

For a large corpus such as the BNC, the scan results can directly be written to a file with the —o switch.
If the filename ends in .gz (such as the file language-model.gz in the example below), the output file
is automatically compressed (using gzip).

$ cwb-scan-corpus -o language-model.gz BNC pos+0 pos+l pos+2

The values of the selected p-attributes can also be filtered with regular expressions. The following
command identifies part-of-speech sequences at the end of sentences (indicated by the tag SENT =
sentence-ending punctuation).

$ cwb-scan-corpus VSS pos+0 pos+1l pos+2=/SENT/ | sort -nr -k 1 | head -20

Since the third key is used only for filtering, we can suppress it in the output by marking it as a
constraint key with the ? character. Note that it may be necessary to enclose more complex keys
(containing shell metacharacters) in single quotes.

$ cwb-scan-corpus VSS pos+0 pos+l 7pos+2=/SENT/ | sort -nr -k 1 | head -20

Note that cwb-scan-corpus can operate both on p-attributes and on s-attributes with annotated
values. To obtain by-story frequency lists for the VSS corpus, use the following command:

$ cwb-scan-corpus -o freq-by-story.tbl VSS lemma+0 story_title+0

As a special case, s-attributes without annotated values can be used to restrict the corpus scan to
regions of a particular type. For instance, the constraint key ?footnote would only scan <footnote>
regions. Keep in mind that such special constraints must not include a regular expression part.

The final example extracts pairs of adjacent adjectives and nouns from the VSS corpus, e.g. as candidate
data for adjective-noun collocations. Constraint keys are used to identify adjectives and nouns, and
only nouns starting with a vowel are accepted here. Note the ¢ and d modifiers (case- and diacritics-
insensitive matching) on this regular expression.

$ cwb-scan-corpus -C VSS lemma+0 ?pos+0=/JJ.*/ lemma+1=/[aeiou].+/cd 7pos+1=/NN.

Except for the -C option, this command line is equivalent to the following CQP commands, but it will
execute much faster on a large corpus.

> A = [pos = "JJ.*"] [pos = "NN.*" & lemma = "[aeiou] .+" %cd];
> group A matchend lemma by match lemma;

The cwb-scan-corpus command is limited to relatively simple constraints on tokens and it can only
match patterns with fixed offsets (but not e.g. determiner and noun separated by an arbitrary number
of adjectives). To obtain frequency tables for more complex patterns, use CQP queries in combination
with the tabulate function. The resulting data tables can be saved to disk files and loaded into a
relational database or processed with a software package for statistical analysis.

(© 2005-2015 Stefan Evert & The CWB Development Team 12

Corpus Encoding Tutorial 8 SENTENCE ALIGNMENT

8 Sentence alignment

An alignment between two parallel corpora (e.g. a collection of source texts and their translations
into some other language) can be encoded as a corpus attribute within CWB.

o Alignment attributes (a-attributes) are unlike other types of attribute because alignment pre-
supposes the existence of the source and target corpora. That is, first we need to encode the two
corpora independently; then we can add the alignment attribute that links them.

e Alignment attributes are usually employed for sentence alignment, and this tutorial will assume
throughout that it is sentences that we are aligning.

e However, you can also align at some other level (e.g. clauses or paragraphs or chapters). Aligning
regions that are much smaller than a sentence will not be very useful because of the limitations
of how CQP deals with a-attributes.

e Only one a-attribute linking any particular pair of corpora can exist.
e There are two ways that a pair of corpora can be aligned.

— First, the cwb-align tool can be used to automatically align the sentences of the two
corpora, with its output subsequently encoded as an a-attribute using cwb-align-encode.

— Second, an existing alignment scheme encoded in the corpus markup can be imported as
an a-attribute using cwb-align-import.

<<add note on what kinds of alignment are allowed: 1-1, many-many, crossing...>>

(rough notes)

> about crossing alignments: I didn’t know that this is supported by
> CWB. I

> usually used cwb-align-encode to built the alignment attributes and
> as far

>

as I remember, crossing links are not allowed when using that tool.

Do you generate the input files for cwb-align-encode yourself? You
have to make sure that the regions in the _source language_ are
ordered (gaps are allowed), but there are no restrictions for the
corresponding target regions. Make sure you _don’t_ pass the "-C"
flag for compatibility mode. Recent version use the "extended"
alignment file format that allows crossing links and gaps (all beta
versions published within the last 5 years or so should support the
extended alignment format).

8.1 The example corpora

First, let’s introduce the data we’ll be working with in this part of the tutorial. All the files mentioned
here are available as part of the data package provided alongside the tutorial document. The corpus

(© 2005-2015 Stefan Evert & The CWB Development Team 13

TODO

Corpus Encoding Tutorial 8 SENTENCE ALIGNMENT

we’ll use to practice alignemnt consists of a very short excerpt from the novel The Hound of the
Baskervilles by Arthur Conan Doyle, which we’ll call the Holmes corpus after the main character.
As well as the original English, we have a German translation of the same text. We’ll use the CWB
labels HOLMES-EN for the source corpus and HOLMES-DE for the target corpus (i.e. the translation)
respectively. Using language codes to distinguish components of a parallel corpus in this way is a
useful way to organise labels for aligned corpora in CWB.

<p num="3">
<s id="a">

Mr. NP Mr.
Sherlock NP Sherlock
Holmes NP Holmes
[...]

was VBD be

seated VBN seat

at IN at

the DT the
breakfast NN breakfast
table NN table

. SENT

</s>

<s id="b">

I PP I

[...]

stood VBD stand
upon IN upon

the DT the
hearth-rug NN hearth-rug
and CcC and
picked VBD pick

up RP up

the DT the

stick VB stick
[...]

. SENT

</s>

[... two more sentences ...]
</p>

Figure 5: Example from the source corpus (file holmes_en.vrt), with abbreviations

Before going further in the tutorial, you should index these two corpora, using the following commands:

$ cwb-encode -d /corpora/data/example -f holmes_en.vrt
-R /usr/local/share/cub/registry/holmes-en
-P pos -P lemma -S s+id -S p+num

$ cwb-encode -d /corpora/data/example -f holmes_de.vrt
-R /usr/local/share/cwb/registry/holmes-de
-P pos -P lemma -S s+id -S p+num

(you should, of course, amend the -d and -R options to suit your own setup).

(© 2005-2015 Stefan Evert & The CWB Development Team 14

Corpus Encoding Tutorial 8 SENTENCE ALIGNMENT

<p num="3">
<S id=llall>

Mr. NN Mr.

Sherlock NN Sherlock
Holmes NE Holmes

[...]

saf VVFIN sitzen

am APPRART an
Frithstiickstisch NN Friihstiickstisch
, $, s

wahrend KOUS wahrend

ich PPER ich

auf APPR auf

dem ART die
Kaminvorleger NN Kaminvorleger
stand VVFIN stehen

und KON und

den ART die
Spazierstock NN Spazierstock
aufhob VVFIN aufheben
[...]

</s>

[... three more sentences ...]

</p>

Figure 6: Example from the target corpus (file holmes_de.vrt), with abbreviations

All the example commands given in the following sections are based on these two corpora. They do
not include the -r option to specify the registry directory location. If you have placed the registry
files for the two corpora anywhere other than the default registry, you will need either to add the -r
option, or else to use the CWB_REGISTRY environment variable.

8.2 Using the sentence aligner

The cwb-align program is a very simple text aligner. It can be considered a “fallback” option for
sentence alignemnt, designed to provide basic functionality when nothing better is available. If your
corpus is already aligned, it is always better to use that existing alignemnt data. Similarly, if you have
a properly-designed and trained aligner for a given language pair, it is always better to use that than
to reply on cwb-align.

In particular, cwb-align will not work well on languages that are unrelated to the extent of sharing
little or no vocabulary, as it works by looking for similarities in the words used in the two corpora it
analyses.

cwb-align makes use of very basic techniques to align units in two parallel corpora by spotting units
- assumed to be of about sentence length - that have the same content. It looks for similarities in
terms of:

e The length of each corpus segment, measured in characters.

e The presence of shared words across the two corpora (ignoring case and accents).

(© 2005-2015 Stefan Evert & The CWB Development Team 15

Corpus Encoding Tutorial 8 SENTENCE ALIGNMENT

e The presence of shared letter sequences (for spotting similar but not identical words).

e The presense of words specified as translation equivalents (a file containing the list of word-pairs
must be provided to look for these kinds of similarity).

Here is how we might create an alignment from scratch and then encode it using the two
HOLMES corpora, assuming that the <s> elements are the units to be aligned.

The most basic use of cwb-align would be as follows:
$ cwb-align -o holmes.align HOLMES-EN HOLMES-DE s

This command has one option and three arguments. The -o option simply specifies a filename for the
output data. The first and second arguments are the labels of the source corpus and the target corpus
respectively. The third argument is the griod attribute, that is, the s-attribute used as the alignment
grid.

The output file has five columns (see figure 7).
The first line is a header line with the names of the aligned corpora and of the grid attribute.

Each subsequent line specifies a pair of aligned regions:

e The beginning of the region in the source corpus

The end of the region in the source corpus

The beginning of the region in the target corpus

The end of the region in the target corpus

The type of alignment: 1:1, 2:1, 1:2 or 2:2 indicating one-to-one, two-to-one, etc. etc.

A number indicating how sure the alignment engine is that this pair of regions really matches.

However, it is not normally necessary for a human being to read the file. Usually it would be used
only as input data for the next step (see below).

TODO insert here what the output looks like

Figure 7: Output from the most basic use of the aligner

To check whether the aligner worked correctly, you can view this file interactively using the cwb-align-show
program. The command to run this program is:

$ cwb-align-show holmes.align

(you can use the -w option for a wider display, if your terminal window is big enough).

Press Return to display the next alignment pair, h for other key commands, and q to exit the viewer.

(© 2005-2015 Stefan Evert & The CWB Development Team 16

Corpus Encoding Tutorial 8 SENTENCE ALIGNMENT

8.3 Advanced use of the aligner

It is possible to get improved results from cwb-align by making use of different parts of the original
corpora, or by tweaking the configruation of the weight it gives to different kinds of comparison.

<<using -P lemma>>

<<u5mg -Sor-V:-Sp, -V p,num>>

<<using - W>>

There are many other parameters that can be tweaked and it may be worth experimenting to see what
gives you the best results. We won’t cover the details in this tutorial. All are described in full in the

cwb-align manual file (accessed by the command man cwb-align on Unix, provided as a separate file
on Windows).

8.4 Encoding the aligner’s output

An alignment attribute is added to an existing CWB corpus, which must be the source corpus of the
alignment (not the target). There are two steps in this process.

The first step is to declare the new alignment attribute in the source corpus’s registry file.

So, find the holmes-en file in the registry directory, and edit it to add the following line:
ALIGNED holmes-de

(note the use of the lowercase spelling of the attribute name!)

This declares an a-attribute linking this corpus to the HOLMES-DE corpus. An a-attribute has the same
name as the target corpus.

If you’ve got the CWB/Perl tools installed, you can use the cwb-regedit to make this change, rather
than manually editing the registry. The command would in this case be as follows:

$ cwb-regedit HOLMES-EN :add :a holmes-de
Once the registry file has been updated, the second and final step is to encode the alignment attribute:
$ cwb-align-encode -D holmes.align

(note that this command will run very fast and will print no output if everything has gone well).

There is only one argument to the cwb-align-encode program: the name of the text file containing
the alignment data. It is not necessary to name either of the corpora, because the holmes.align file
contains both names.

It is, however, always necessary to state where you want the encoded files to be placed. The recom-
mended way to do this is the method shown above: with the -D option. This puts the a-attribute’s
data files in the same directory used for the corpus’s other attributes (specified in the registry file).

Alternatively, you can specify a different location with the -d option.
Once encoding is complete, it’s safe to delete the holmes.align file.

This procedure only creates an a-attribute in HOLMES-EN, linking it to HOLMES-DE. If you also want
an a-attribute in HOLMES-DE linking it to HOLMES-DE, you must repeat the whole procedure with the
source and target corpora switched.

(© 2005-2015 Stefan Evert & The CWB Development Team 17

TODO
TODO
TODO

Corpus Encoding Tutorial A APPENDIX: REGISTRY FILE FORMAT

8.5 Importing a pre-existing alignment

The procedure to import an alignment from existing information in the corpus markup is
as follows.

<<Imp0rt of pre-existing alignment>> TODO
cwb-align-import -p beadfile.txt

@mwabmWMkhMMMm> TODO
<<also, a discussion of creating .align or bead files from the output of other tools??>> TODO
<<following should prob go in the CQP tutorial isntead of here>> TODO

Notefrom stefan on using a-atts:

A brief note on using alignment information in CQP, for the VMGERMAN-VMENGLISH alignment.
There are basically two reasonable uses of sentence alignment

(many other things would be possible, but haven’t been implemented in CQP).

The following commands are typed in a CQP session

(everything after a "#" character is a comment you don’t have to type in):

VMGERMAN;
set Context 1 s; # sentence alignment makes most sense if you’re also viewing sel
"Bahn.+"; # some CQP query, here German words starting with "Bahn-"

show +vmenglish; # activate display of sentence alignment

cat; # redisplays query result, now giving aligned sentence for every query match
"Bahn.+" :VMENGLISH "rail.*"; # only those matches where aligned sentence contain:
"Bahn.+" :VMENGLISH ! "rail.*"; # only those matches where aligned sentence does |

Hope this helps to give you a first impression.

A Appendix: Registry file format

The following is a sample registry file created by cwb-encode. The cwb-regedit also creates registry
files in this format.

##

registry entry for corpus BNCSAMPLER
##

long descriptive name for the corpus

NAME ""

corpus ID (must be lowercase in registry!)

ID bncsampler

path to binary data files

HOME /home/Corpora/data/bncsampler

optional info file (displayed by "info;" command in CQP)
INFO /home/Corpora//bncsampler/.info

(© 2005-2015 Stefan Evert & The CWB Development Team 18

Corpus Encoding Tutorial

A APPENDIX: REGISTRY FILE FORMAT

corpus properties provide additional information about the corpus:
##:: charset = "utf8" # change if your corpus uses different charset

##:: language = "77"

##
p-attributes (token annotations)
##

ATTRIBUTE word
ATTRIBUTE pos
ATTRIBUTE hw
ATTRIBUTE semtag
ATTRIBUTE class
ATTRIBUTE lemma

##
s-attributes (structural markup)
##

<text id=".."> ... </text>
(no recursive embedding allowed)
STRUCTURE text

STRUCTURE text_id

<s> ... </s>
STRUCTURE s

Yours sincerely, the Encode tool.

insert ISO code for language (de, en, fr, ...)

[annotations]

CWB traditionally had a more flexible registry file format (which is still accepted for backward com-
patibility), which could contain a variety of other declarations. The standard format for new corpora,
however, is as given above; we recommend that you stick to this format, since it is in fact enforced by

the CWB/Perl scripts.

Finally, it is worth noting that directory and file paths in HOME and INFO entries have to be double-
quoted if they contain blanks or other non-standard characters (ASCII letters, digits, -, _, / and .
are ok, as long as the path does not begin with .). In a double-quoted path, " must be escaped as \"
and the backslash \ as \\. If you use cwb-encode and cwb-regedit, they should always create valid

entries, with quotes added when necessary.

(© 2005-2015 Stefan Evert & The CWB Development Team

19

	Prerequisites
	First steps: Encoding and indexing
	Indexing and compression without CWB/Perl
	CWB corpora and XML
	Adding attributes to an encoded corpus
	Adding XML annotations
	Accessing frequency information
	Sentence alignment
	The example corpora
	Using the sentence aligner
	Advanced use of the aligner
	Encoding the aligner's output
	Importing a pre-existing alignment

	Appendix: Registry file format

